

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Structural refinement of $T_2Mo_3O_8$ (T=Mg, Co, Zn and Mn) and anomalous valence of trinuclear molybdenum clusters in $Mn_2Mo_3O_8$

Hideki Abe*, Akira Sato, Naohito Tsujii, Takao Furubayashi, Masahiko Shimoda

National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan

ARTICLE INFO

Article history: Received 6 August 2009 Received in revised form 4 November 2009 Accepted 21 November 2009 Available online 29 December 2009 Keywords: Mo Trinuclear cluster Valence Non-bonding molecular orbital

ABSTRACT

Crystal structure of a series of mixed-metal oxides, $T_2Mo_3O_8$ (T=Mg, Co, Zn and Mn; PG_3mc ; a=5.7628(1)Å, c=9.8770(3)Å for $Mg_2Mo_3O_8$; a=5.7693(3)Å, c=9.9070(7)Å for $Co_2Mo_3O_8$; a=5.7835(2)Å, c=9.8996(5)Å for $Zn_2Mo_3O_8$; a=5.8003(2)Å, c=10.2425(5)Å for $Mn_2Mo_3O_8$) was investigated by X-ray diffraction on single crystals. Structural analysis, magnetization measurements, X-ray photoemission spectroscopy and cyclic voltammetry showed that the Mn ions at the tetrahedral and octahedral sites in $Mn_2Mo_3O_8$ adopt different valences of +2 and $2+\delta$ ($\delta > 0$), respectively. The formal valence of the Mo_3 in $Mn_2Mo_3O_8$ is $12-\delta$ to retain electric neutrality of the compound. In contrast, the T ions and Mo_3 in $T_2Mo_3O_8$ (T=Mg, Co and Zn) adopt the valences of +2 and +12, respectively.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Unpaired electron

Inorganic compounds containing transition-metal clusters are of growing importance as catalysts for the synthesis of organic materials [1]. A carbonyl complex of trinuclear ruthenium, $[Ru_3(\mu_3-ampy)(\mu-\eta^1:\eta^2-PhC=CHPh)(CO)_8]$ (Hampy=2-amino-6methylpyridine), catalyzes the selective hydrogenation of diphenylacetylene [2]. [Ru₃ ($\mu_3, \eta^2, \eta^3, \eta^5$ -acenaphthylene)(CO)₈] is a good catalyst towards the reaction of secondary amides with hydrosilanes [3]. Unlike Ru₃, the trinuclear cluster of tetravalent molybdenum, Mo⁴⁺3¹²⁺, does not act as an effective catalysis center. A sulfo-complex of Mo_3^{12+} , $[Mo_3^{12+}Cu^+S_4(dmpe)_3Cl_4]^+$ (dmpe=1,2-bis(dimethylphosphino)ethane), exceptionally catalyzes organic reactions including the intramolecular cyclization of diazo ketones and/or the intermolecular cyclopropanation of styrene with ethyl diazo acetate [4,5]. The catalytic activity of $[Mo_3^{12+}Cu^+S_4(dmpe)_3Cl_4]^+$ is, however, solely ascribed to Cu^+ instead of Mo_3^{12+} [5].

The catalytic inertness of Mo_3^{12+} is explained on the basis of the Hückel theory [6,7]. A Mo₃ cluster incorporated in inorganic compounds is described as an isolated molecule with molecular orbitals consisting of Mo 4*d* orbitals. The bonding molecular orbitals of Mo_3^{12+} are fully occupied to form a stable closed shell that is catalytically inert [7]. This theoretical picture is consistent with the fact that the most usual valence of Mo₃ is +12 for the

E-mail address: ABE.hideki@nims.go.jp (H. Abe).

known Mo₃-containing complexes, excluding few compounds in which Mo₃ adopts +11 [8]. It is of practical interest if Mo₃ can adopt a valence other than +12 to become catalytically active, when it is incorporated in a structural framework other than that of molecular complexes [9,10].

We have focused on a series of mixed-metal oxides that incorporate Mo₃ in the solid-state framework, $T_2Mo_3O_8$ (T=Mg, Zn, Mn, Fe, Co, Ni or Cd) [11–24]. Fig. 1a shows a [001] view of the crystal structure of $T_2Mo_3O_8$. Thirteen oxygen atoms are coordinated to a Mo₃ to construct a larger unit of [Mo₃O₁₃] (Fig. 1a, depicted by a ball-and-stick model). The [Mo₃O₁₃] units share the oxygen atoms at the O2 and O3 sites to form twodimensional Mo₃O₈ layers (Figs. 1a and b, represented by dark gray polygons). Two adjacent Mo₃O₈ layers sandwich *T* ions that are either tetrahedrally (Fig. 1b; *T*1 sites, represented by light gray tetrahedra) or octahedrally (Figs. 1a and b; *T*2 sites, represented by light gray octahedra) coordinated by oxygen atoms. To date, the valences of the *T* ions and Mo₃ in $T_2Mo_3O_8$ have been presumed to be +2 and +12, respectively [11–24].

On the basis of X-ray diffractometry (XRD) on single crystals, magnetization measurements, X-ray photoemission spectroscopy (XPS) and cyclic voltammetry, we demonstrate that the Mo₃ in Mn₂Mo₃O₈ adopt an anomalous valence of $12 - \delta$ ($\delta > 0$) instead of +12. The valences of the Mn ions at the T1 and T2 sites in Mn₂Mo₃O₈ are +2 and 2+ δ , respectively, which retains electric neutrality of the compound. In contrast to Mn₂Mo₃O₈, the valences of the *T* ions and Mo₃ in T₂Mo₃O₈ (T=Mg, Co or Zn) are +2 and +12, respectively. The Mo₃^{12- δ} in Mn₂Mo₃O₈ has excessive electrons relative to Mo₃¹²⁺. The excessive electrons are most

^{*} Corresponding author. Fax: +81 29 859 2301.

^{0022-4596/\$ -} see front matter \circledcirc 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2009.11.024

Fig. 1. Crystal structure of $T_2Mo_3O_8$, viewed from the [001] direction, together with the unit cell. (a) Mo_3O_8 layer (dark gray polygons), together with $T2O_6$ octahedra (light gray). A $[Mo_3O_{11}]$ unit is depicted by a ball-and-stick model. (b) Configuration of the *T*1 (light gray tetrahedra) and *T*2 sites beneath the Mo_3O_8 layer of Fig. 1a.

likely accepted by a non-bonding molecular orbital of $Mo_3^{12-\delta}$ to be unpaired electrons. Unlike any known Mo_3^{12+} -containing compounds, $Mn_2Mo_3O_8$ has potential as a Lewis-base catalyst, due to the unpaired electron on the $Mo_3^{12-\delta}$.

2. Material and methods

2.1. Sample preparation

Single crystals of $T_2Mo_3O_8$ (T=Mg [18], Co [18], Zn [18] and Mn) were synthesized by electrolysis of molten molybdates that dissolved the *T* ions of the desired compounds. The electrolyte for Mg₂Mo₃O₈ was a 1:1 mole mixture of Cs₂MoO₄ (99% purity, Soekawa Chemical) and MgMoO₄ (99.9% purity, Soekawa Chemical). The electrolyte for Co₂Mo₃O₈ was a 1:1:1 mole mixture of Cs₂MoO₄, CoO (99% purity, Koso Chemical) and MoO₃ (99.9% purity, Mitsuwa Chemical). The electrolyte for Zn₂MoO₄ and MoO₃ (99.9% purity, Mitsuwa Chemical). The electrolyte for Zn₂Mo₃O₈ was a 1:1:1 mole mixture of Cs₂MoO₄, ZnO (99.9% purity, Kojundo Kagaku) and MoO₃. The electrolyte for Mn₂Mo₃O₈ was a 1:1:1 mole mixture of Cs₂MoO₄, Mn(CO₃) 0.5H₂O (Kishida Chemical) and MoO₃. The net weight of the electrolytes was 4.0 g for any $T_2Mo_3O_8$.

Alumina boats $10 \times 10 \times 100 \text{ mm}^3$ in width, depth, and length, respectively, were used as electrolyte containers. Working and counter electrodes (Pt wires with a diameter of 1 mm) were fixed at the opposite ends of an electrolyte container. A reference electrode (a Pt wire with a diameter of 1 mm) was fixed near the working electrode. All the electrodes were connected to a potentiostat (Hokuto Denko, Model HA-151) with Pt leads having a diameter of 0.3 mm. The electrolyte container, equipped with Pt electrodes, was filled with the electrolyte for the desired T_2 Mo₃O₈. The electrolyte was molten by heating in air up to 1050 °C. The melt was electrolyzed over 1 h at a constant current of 20 mA. The

electrolysis was terminated by removing the electrodes from the melt. Black hexagonal crystals of $T_2Mo_3O_8$ precipitated at the tip of the working electrode. The average size of the crystals was 0.5 mm³, regardless of the kind of *T* ion. The crystals were washed by soaking overnight in an aqueous solution that dissolved 1 g l⁻¹ each of ethylene diamine tetraamino acid (EDTA; 99.5% purity, Kishida Chemical) and NaHCO₃ (99% purity, Kishida Chemical).

2.2. Characterization

Powder X-ray diffraction (*p*XRD; RIGAKU RINT 2000, CuK α radiation, λ =1.541 Å) was performed on the powdered crystals of T_2 Mo₃O₈. Single-crystal XRD was performed with graphite-monochromatized MoK α radiation (λ =0.71073 Å), using a Bruker SMART APEX CCD area-detector diffractometer. Magnetization measurements were performed with a superconductive quantum interference device (SQUID) magnetometer (MPMS, Quantum Design) at a magnetic field of 1 T in a temperature range from 2 to 800 K. Quartz tubes were used as sample holders for magnetic measurements. Magnetization of empty sample holders was subtracted from the magnetization of the specimens.

X-ray photoemission spectroscopy (XPS) measurements were performed at room temperature in an ultra-high vacuum using a VG ESCALAB MkII spectrometer and Al- α radiation (1487 eV). The reference specimens, MnO, Mn₂O₃ and MnO₂ (all 99% purity, Kishida Chemical), were used as purchased. Specimens for XPS measurements were prepared by mixing the powdered crystals of T_2 Mo₃O₈ and/or the reference specimens with carbon black. The XPS data were referenced to the C 1*s* emission (284.5 eV) of the adventitious carbon black as an internal standard. The XPS spectra were fitted using mixed Gaussian–Lorentzian functions.

Cyclic voltammetry (CV) measurements were performed in the same electrolytes as those for the synthesis of $T_2Mo_3O_8$: a 1:1 mole mixture of Cs_2MoO_4 and $MgMoO_4$ for $Mg_2Mo_3O_8$; a 1:1:1 mole mixture of Cs_2MoO_4 , CoO and MoO_3 for $Co_2Mo_3O_8$; a 1:1:1 mole mixture of Cs_2MoO_4 , ZnO and MoO_3 for $Zn_2Mo_3O_8$; a 1:1:1 mole mixture of Cs_2MoO_4 , ZnO and MoO_3 for $Zn_2Mo_3O_8$; a 1:1:1 mole mixture of Cs_2MoO_4 , $Mn(CO_3)$ 0.5H₂O and MoO_3 for $Mn_2Mo_3O_8$. CV measurements were performed in air at 1050 °C. The sweep rate for CV measurements was 10 mV s^{-1} . Pt wires with a diameter of 1 mm were used as the working and counter electrodes. The electrode potentials for CV measurements were referenced to a Pt wire electrode with a diameter of 1 mm.

3. Results and discussion

Fig. 2 shows *p*XRD profiles for $T_2Mo_3O_8$, together with a pattern simulated using the following crystallographic parameters: $P6_3mc$; a=5.8 Å and c=9.9 Å. The *p*XRD profiles of Mg₂Mo₃O₈, Co₂Mo₃O₈ and Zn₂Mo₃O₈ are consistent with the simulated pattern, excluding the impurity peaks of MgO and CoO for Mg₂Mo₃O₈ and Co₂Mo₃O₈, respectively. The *p*XRD profile for Mn₂Mo₃O₈ shows a significant shift to lower angles relative to the simulation.

The inset shows the lattice parameters of $T_2Mo_3O_8$, calculated from the peak positions of the *p*XRD profiles, as functions of the ionic radius (I_r) of the *T* ions. The values of I_r are based on the premise that the *T* ions are divalent and octahedrally coordinated by oxygen atoms: Mg^{2+} (I_r =0.66 Å), Co^{2+} (I_r =0.72 Å), Zn^{2+} (I_r =0.74 Å) and Mn^{2+} (I_r =0.80 Å) [25]. The *a*-parameter of $T_2Mo_3O_8$ slightly increases with the increase in I_r . The *c*parameter also tends to increase up to I_r =0.74 Å (Zn^{2+}). When I_r =0.80 Å (Mn^{2+}), the *c*-parameter abruptly increases by 3.4 percents relative to the value at I_r =0.74 Å (Zn^{2+}). The low-angle shift of the *p*XRD profile for $Mn_2Mo_3O_8$ relative to those for the

Fig. 2. *p*XRD profiles for $T_2Mo_3O_8$ (T=Mg, Co, Zn and Mn). Inset shows the relation between the ionic radius of the T^{2+} ions and the lattice parameters of $T_2Mo_3O_8$. Asterisked peaks in the profiles of $Mg_2Mo_3O_8$ and $Co_2Mo_3O_8$ are assigned to MgO and CoO, respectively.

Table 1

Crystallographic data for $T_2Mo_3O_8$.

Formula	$Mg_2Mo_3O_8$	$Co_2Mo_3O_8$	$Zn_2Mo_3O_8$	$Mn_2Mo_3O_8$
Formula Formula weight Crystal system Space group a (Å) c (Å) V (Å ³) Z Temperature (K) μ (MoK α) (mm ⁻¹) 2θ range (deg) Reflections collected Unique reflections R_{int} $R1$ ($F_0 > 4 \sigma$ (F_0)) ^a	Mg ₂ Mo ₃ O ₈ 464.44 Hexagonal P6 ₃ mc 5.7628(1) 9.8770(3) 284.068(11) 2 293 6.601 0-105 8266 1201 0.0413 0.0271	Co ₂ Mo ₃ O ₈ 533.68 Hexagonal <i>P</i> 6 ₃ <i>mc</i> 5.7693(3) 9.9070(7) 285.57(3) 2 293 12.10 0-80.82 4685 730 0.0309 0.0186	$\begin{array}{c} Zn_2Mo_3O_8\\ \\ 546.56\\ Hexagonal\\ P6_3mc\\ 5.7835(2)\\ 9.8996(5)\\ 286.77(2)\\ 2\\ 293\\ 14.63\\ 0-82.21\\ 4723\\ 741\\ 0.0398\\ 0.0267\\ \end{array}$	Mn ₂ Mo ₃ O ₈ 525.70 Hexagonal <i>P</i> 6 ₃ <i>mc</i> 5.8003(2) 10.2425(5) 298.43(2) 2 293 10.25 0-80.64 4901 724 0.0350 0.0352
R1 on all data ^a	0.0275	0.0189	0.0270	0.0355
wR2 on all data ^b	0.0637	0.0444	0.0673	0.0859
Refined parameters	32	31	31	31
Residual peaks, <i>e</i> Å ⁻³	0.46	0.22	0.23	0.58

^a $R1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|.$

^b $wR2 = (\Sigma[w(F_0^2 - F_c^2)^2] / \Sigma[wF_0^4])^{1/2}.$

other T_2 Mo₃O₈ (T=Mg, Co or Zn) is, therefore, ascribed to the exceptionally large *c*-parameter of Mn₂Mo₃O₈.

Single-crystal XRD was performed to obtain more detailed structural information. The crystal structures were refined on the basis of literature, using the SHELXL97 program (Table 1) [11–13,16]. The refined positional parameters, isotropic equivalent atomic displacement parameters and site occupancy factors are provided as supporting information, together with literature values (S1). The refined positional parameters for $T_2Mo_3O_8$ (T=Mg and Zn) are consistent with the literature [11–13,16].

The interatomic distances for $T_2Mo_3O_8$ were calculated using the crystallographic data as well as the refined positional parameters (Table 2). The *T*–O distances, calculated using literature values for the ionic radii of oxygen and of the *T* ions $(Mg^{2+}, Co^{2+}, Zn^{2+}, Mn^{2+} and Mn^{3+})$, are also presented in parentheses [25]. The calculated *T*-O distances for the *T* ions=Mg²⁺, Co²⁺, Zn²⁺, are consistent with the observed values. The calculated value for the *T* ion=Mn²⁺ is consistent with the observed Mn2–O3 distance, but shows a considerable deviation from the observed Mn2–O4 distance. Instead, the observed Mn2–O4 distance is consistent with the value calculated for the *T* ion=Mn³⁺. The interatomic distances of the neighboring Mo atoms in Mo₃ clusters are less dependent on the kind of the *T* ions than the *T*-O distances. It is worth noting, however, that the Mo–Mo distance for Mn₂Mo₃O₈ is larger by 0.3% than the value for Zn₂Mo₃O₈.

The bond valences of the *T* ions in $T_2Mo_3O_8$, V_T , were calculated using the equation, $V_T = \Sigma \exp((R_0 - \text{the observed } T-\text{O distance})/$ 0.370) (Table 3) [26]. The calculated bond valences for *T*=Mg, Co and Zn are, regardless of site, consistent with the value expected for divalent ions, +2. The bond valence calculated for Mn1 is also consistent with +2. The bond valence calculated for Mn2 shows, however, a considerable deviation from +2 by 13%. The analysis on the *T*-O distances and/or the bond valences suggests that the Mn2 ions in Mn₂Mo₃O₈ adopt a higher valence than +2. The calculated bond valences of Mo in $T_2Mo_3O_8$ are also listed in Table 3. The bond valences of Mo for Zn₂Mo₃O₈ (+3.999) and Mn₂Mo₃O₈ (+4.007) are slightly smaller than those for Mg₂Mo₃O₈ (+4.054) or Co₂Mo₃O₈ (+4.060).

Fig. 3 shows magnetic susceptibilities of $T_2Mo_3O_8$ as functions of temperature. The green squares and red hatches represent the magnetic susceptibilities of Mg₂Mo₃O₈ (χ_{Mg}) and Zn₂Mo₃O₈ (χ_{Zn}), respectively. Both χ_{Mg} and χ_{Zn} are virtually independent of temperature from 50 to 300 K. The amplitudes of both χ_{Mg} and χ_{Zn} are very small ($< 1 \times 10^{-3}$ emu mol⁻¹) over the whole temperature range. The non-magnetic behavior of Mg₂Mo₃O₈

Table 2X-ray interatomic distances for T2M0308.

	Distances (Å)			
	Mg ₂ Mo ₃ O ₈	Co ₂ Mo ₃ O ₈	$Zn_2Mo_3O_8$	Mn ₂ Mo ₃ O ₈
T1-02	1.951(3) (1.99)	1.947(4)	1.947(7) (2.00)	2.012(7)
<i>T</i> 1–O3	1.9545(17) (1.99)	1.966(3) (-)	1.963(4) (2.00)	2.032(5)
T2-03	2.101(2) (2.12)	2.122(3) (2.14)	2.128(4) (2.15)	2.208(4) (2.22: Mn ²⁺) (2.05: Mn ³⁺)
<i>T</i> 2-04	2.047(2) (2.12)	2.045(3) (2.14)	2.045(4) (2.15)	(2.03: Mn ²) 2.104(5) (2.22: Mn ²⁺) (2.05: Mn ³⁺)
Mo-01 Mo-02 Mo-03 Mo-04 Mo-Mo	2.0263(18) 2.1421(14) 2.0761(11) 1.9522(15) 2.5271(2)	2.022(3) 2.1389(19) 2.0782(14) 1.952(2) 2.5274(4)	2.027(4) 2.145(3) 2.085(2) 1.957(3) 2.5325(6)	2.035(4) 2.151(3) 2.074(3) 1.958(4) 2.5391(6)

Table 3Bond valences of the T and Mo ions in $T_2Mo_3O_8$.

	Mg ₂ Mo ₃ O ₈	Co ₂ Mo ₃ O ₈	$Zn_2Mo_3O_8$	$Mn_2Mo_3O_8$
T ions	Mg ²⁺	Co ²⁺	Zn ²⁺	Mn ²⁺
R ₀ (Å)	1.693	1.692	1.704	1.790
V _{T1}	+1.977	+1.933	+2.008	+2.109
V _{T2}	+2.148	+2.094	+2.147	+2.253
Mo	+4.054	+4.060	+3.999	+4.007

Fig. 3. Magnetic susceptibilities of T_2 Mo₃O₈ as functions of temperature. Inset shows a plot of the magnetic susceptibility of Mn₂Mo₃O₈ below 60 K.

Fig. 4. Reciprocal magnetic susceptibilities of $T_2Mo_3O_8$ (T=Co and Mn) as functions of temperature.

and $Zn_2Mo_3O_8$ is consistent with the premise that the valences of the *T* ions and Mo₃ (*T*=Mg and Zn) are +2 and +12, respectively. The non-magnetic, closed-shell Mo¹²⁺ does not contribute to the net magnetization [19].

The red open circles represent the magnetic susceptibility of $Co_2Mo_3O_8$ (χ_{Co}). Unlike either χ_{Mg} or χ_{Zn} , χ_{Co} increases monotonously with decreasing the temperature from 300 to 40 K. χ_{Co} shows a steep decrease at 40 K, which is assigned to an antiferromagnetic ordering of the local moments of Co [21,22]. The blue closed circles represent the magnetic susceptibility of Mn_2Mo_3O_8 (χ_{Mn}). Similar to χ_{Co} , χ_{Mn} monotonously increases with a decrease in temperature from 300 to 45 K. χ_{Mn} steeply rises at a transition temperature of 43 K and shows a peak at 35 K. The inset shows χ_{Mn} near the transition temperature. The χ_{Mn} at 35 K is nearly 30 times larger than that at 45 K. The anomaly of χ_{Mn} at 43 K is attributed to a ferrimagnetic ordering of the local moments of Mn [21–24].

Fig. 5. XPS spectrum of the Mn 2p shells for Mn₂Mo₃O₈.

Table 4 XPS binding energies for $Mn_2Mo_3O_8$ and the reference specimens.

Compound	Mn 2 <i>p</i> _{3/2} (eV)	Mn $2p_{1/2}$ (eV)	$\varDelta^{a}\left(eV ight)$
Mn ₂ Mo ₃ O ₈ MnO Mn ₂ O ₃ MnO ₂	$\begin{array}{c} 641.9 \pm 0.2 \\ 641.9 \pm 0.2 \\ 642.3 \pm 0.2 \\ 642.8 \pm 0.2 \end{array}$	$\begin{array}{c} 653.8 \pm 0.2 \\ 653.9 \pm 0.2 \\ 653.8 \pm 0.2 \\ 654.3 \pm 0.2 \end{array}$	11.9 12.0 11.5 11.5

^a Δ : spin-orbit splitting.

The reciprocal magnetic susceptibilities of $Co_2Mo_3O_8$ and $Mn_2Mo_3O_8$, $(\chi_{Co})^{-1}$ and $(\chi_{Mn})^{-1}$, respectively, are plotted in Fig. 4 as functions of temperature. Both $(\chi_{Co})^{-1}$ and $(\chi_{Mn})^{-1}$ show a linear dependence on temperature from 300 to 800 K. The effective magnetic moments, μ_{eff} , of $Co_2Mo_3O_8$ and $Mn_2Mo_3O_8$ are calculated on the basis of Curie–Weiss analysis in the temperature range of 400 to 800 K. The μ_{eff} of $Co_2Mo_3O_8$ is evaluated to be 4.0 μ_B/Co , which is consistent with the values reported in the literature, 4.34 μ_B/Co [11] and/or 3.9 μ_B/Co [22]. The μ_{eff} evaluated by this work, 4.0 μ_B/Co , is also consistent with the value expected for the high-spin state of Co^{2+} ions, 3.873 μ_B/Co^{2+} (S=3/2). It is reasonable to conclude that the valence of the Co ions in $Co_2Mo_3O_8$ is +2. As in the cases of $Mg_2Mo_3O_8$ and $Zn_2Mo_3O_8$, the closed-shell Mo_3^{12+} in $Co_2Mo_3O_8$ does not contribute to the net magnetization of the compound.

The μ_{eff} of Mn₂Mo₃O₈ is evaluated to be 4.36 μ_B /Mn, which shows a deviation from the literature values evaluated by Curie–Weiss analysis at temperatures lower than 300 K, 4.93 μ_B /Mn [11], 6.1 μ_B /Mn [21], 5.9 μ_B /Mn [22] or 6.40 μ_B /Mn [24]. It is worth noting that the evaluated μ_{eff} for Mn₂Mo₃O₈, 4.36 μ_B /Mn, is consistent with the average magnetic moment determined by neutron diffraction, 4.3 \pm 0.3 μ_B /Mn [21]. The μ_{eff} for Mn₂Mo₃O₈ is much smaller than 5.916 μ_B /Mn²⁺ (S=5/2) and consistent with either 4.899 μ_B /Mn³⁺ (S=2) or 3.873 μ_B /Mn⁴⁺ (S=3/2). The average valence of the Mn1 and Mn2 ions in Mn₂Mo₃O₈ is close to either +3 or +4.

Fig. 5 shows an XPS spectrum for $Mn_2Mo_3O_8$ in the Mn 2p region. Two peaks at 641.9 ± 0.2 and 653.8 ± 0.2 eV are assigned to the Mn $2p_{3/2}$ and $2p_{1/2}$ emissions, respectively. The slight convex at around 648 eV could be attributed to a shake-up satellite of the Mn 2p emissions.

Fig. 6. XPS spectra of the Mo 3*d* shells for T_2 Mo₃O₈. Inset shows the relation between the Mo–Mo distances and the Mo 3*d*_{5/2} binding energies.

The Mn $2p_{3/2}/2p_{1/2}$ binding energies for Mn₂Mo₃O₈ are listed in Table 4, together with the values for the reference specimens. The values for the reference specimens are consistent with those reported in the literature [27,28]. The Mn $2p_{3/2}/2p_{1/2}$ binding energies for Mn₂Mo₃O₈ are consistent with those for MnO and/or Mn_2O_3 within experimental errors. In contrast, the $Mn 2p_{3/2}/2p_{1/2}$ binding energies for MnO₂ show finite deviation from those for Mn₂Mo₃O₈. The valence of the Mn ions in Mn₂Mo₃O₈ lies, therefore, between +2 and +3. Taking into account the results of XRD, the magnetization measurements and XPS, we conclude that the Mn1 and Mn2 ions in Mn2Mo3O8 adopt different valences, +2 and 2+ δ ($\delta > 0$), respectively, whereas the value of the T ions in the other $T_2Mo_3O_8$ (T=Mg, Zn or Co) is +2 regardless of sites. In terms of electric neutrality of the compound, the formal valence of the Mo₃ in Mn₂Mo₃O₈ is determined as $12 - \delta$.

Fig. 6 shows XPS spectra for $T_2Mo_3O_8$ in the Mo 3*d* region. The peaks near 231 and 234 eV are assigned to the Mo $3d_{5/2}$ and $3d_{3/2}$ emissions, respectively. The Mo $3d_{5/2}/3d_{3/2}$ binding energies show a dependence on the kind of the *T* ions. The inset shows the Mo $3d_{5/2}$ binding energies as a function of the Mo–Mo distance (see Table 2) for $T_2Mo_3O_8$. The Mo $3d_{5/2}$ binding energies tend to decrease in the order of *T*=Mg, Co, Zn and Mn, along with an increase in the Mo–Mo distance. Both the lowering of Mo $3d_{5/2}$ binding energy and the large Mo–Mo distance for Mn₂Mo₃O₈ are consistent with the existence of excessive electrons on the $Mo_3^{12-\delta}$ in Mn₂Mo₃O₈. Indeed, Torardi et al. have shown that the Mo–Mo distance of a Mo_3^{11+} in LiZn₂Mo_3^{11+}O_8 is lager than that of a Mo_3^{12+} in Zn₂Mo_3^{12+}O_8, owing to excessive electrons on Mo_3^{11+} [10].

Fig. 7. Cyclic voltammetry (CV) profiles for T₂Mo₃O₈.

Fig. 7 shows the cyclic voltammetry (CV) profiles for $T_2Mo_3O_8$. The ionic current for $Mg_2Mo_3O_8$ (I_{Mg}) monotonously decreases on the cathodic sweep from +0.20 to -0.70 V. The sharp drop of I_{Mg} at -0.75 V corresponds to the reduction of MgMo⁶⁺O₄ to precipitate $Mg_2Mo_3^{4+}O_8$ crystals. On the anodic sweep from -1.0 V, the I_{Mg} shows a peak at -0.39 V. This peak is attributed to the oxidation of the Mo^{4+} ions in $Mg_2Mo_3^{4+}O_8$ to Mo^{6+} ions $(Mo^{4+} \rightarrow Mo^{6+})$. The ionic current for $Zn_2Mo_3O_8$ (I_{Zn}) shows a potential dependence similar to that of the I_{Mg} . The peak of I_{Zn} at -0.40 V on the anodic sweep corresponds to the Mo⁴⁺ \rightarrow Mo⁶⁺. The ionic current for $Co_2Mo_3O_8$ (I_{Co}) shows a valley at -0.18 V and a peak at -0.39 V on the cathodic sweep. The peak of I_{Co} at -0.52 V on the anodic sweep corresponds to the Mo⁴⁺ \rightarrow Mo⁶⁺.

The ionic current for $Mn_2Mo_3O_8$ (I_{Mn}) shows two peaks at -0.61 and -0.30 V on the anodic sweep, unlike the single peaks observed for the other I_T (T=Mg, Zn or Co). The peak of I_{Mn} at -0.61 V can be attributed to the oxidation of the $\hat{M}o_3^{12-\delta}$ clusters in $Mn_2Mo_3O_8$ to Mo_3^{12+} ($Mo_3^{12-\delta} \rightarrow Mo_3^{12+}$). The peak of I_{Mn} at -0.30 V corresponds to the $Mo^{4+} \rightarrow Mo^{6+}$. The $Mo_3^{12-\delta} \rightarrow Mo_3^{12+}$ is associated with a transfer of less than one electron per one Mo₃ cluster, whereas the $Mo^{4+} \rightarrow Mo^{6+}$ is associated with a transfer of two electrons per one Mo ion. The peak of I_{Mn} corresponding to the $Mo_3^{12-\delta} \rightarrow Mo_3^{12+}$ is, indeed, smaller than that corresponding to the $Mo^{4+} \rightarrow Mo^{6+}$.

Cotton showed that Mo_3^{12+} possesses a non-bonding (or weakly anti-bonding) lowest unoccupied molecular orbital with the A_1 symmetry (A_1 -LUMO) [7]. Excessive electrons of Mo₃^{12- δ} relative to Mo_3^{12+} are most likely accepted by the A_1 -LUMO to become unpaired electrons. The unpaired electron does not participate in the chemical bonding among any of the constituent atoms of $Mn_2Mo_3O_8$. $Mn_2Mo_3O_8$ has potential as a Lewis-base catalyst since the unpaired electrons on the $Mo_3^{12-\delta}$ might act as an effective catalysis center.

4. Conclusions

In conclusion, we have demonstrated that the Mo₃ cluster in $Mn_2Mo_3O_8$ adopts an anomalous valence of $12 - \delta$ ($\delta > 0$), unlike the Mo_3^{12+} clusters that are usually recognized for the known Mo₃-containing compounds. The $Mo_3^{12-\delta}$ in $Mn_2Mo_3O_8$ possesses excessive electrons relative to Mo_3^{12+} . $Mn_2Mo_3O_8$ is worthy of further research as a Lewis-base catalyst due to the unpaired electrons on the $Mo_3^{12-\delta}$.

Supporting information

X-ray crystallographic data in CIF format for $T_2Mo_3O_8$ (T=Mg, Co, Zn and Mn), as well as a table that represents the refined positional parameters (S1).

Acknowledgments

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the Japan Society for the Promotion of Science (JSPS) through Grant-in-Aid 19560845.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jssc.2009.11.024.

References

- [1] W.L. Gladfelter, K.J. Roesselet, in: D.F. Shriver, H.D. Kaesz, R.D. Adams (Eds.), The Chemistry of Metal Cluster Complexes, VCH, New York, 1990.
- [2] J.A. Cabeza, J.M. Fernández-Colinas, A. Llamazares, V. Riera, Organometallics 13 (1994) 4352–4359. [3] S. Hanada, T. Ishida, Y. Motoyama, H. Nagashima, J. Org. Chem. 72 (2007)
- 7551-7559. [4] M. Feliz, E. Guillamón, R. Llusar, C. Vicent, S.E. Stiriba, J. Pérez-Prieto, M.
- Barberis, Chem. Eur. J. 12 (2006) 1486-1492. [5] E. Guillamón, R. Llusar, J. Pérez-Prieto, S.-E. Stiriba, J. Organomet. Chem. 693
- (2008) 1723-1727
- [6] F.A. Cotton, T.E. Haas, Inorg. Chem. 3 (1964) 10-17.
- F.A. Cotton, Inorg. Chem. 3 (1964) 1217-1220.
- [8] J. Mizutani, H. Imoto, T. Saito, J. Clust. Science 6 (1995) 523-532.
- [9] C.C. Torardi, R.E. McCarley, J. Solid State Chem. 37 (1981) 393-397.
- [10] C.C. Torardi, R.E. McCarley, Inorg. Chem. 37 (1985) 476–481.
 [11] W.H. McCarroll, L. Katz, R. Ward, J. Amer. Chem. Soc. 79 (1957) 5410–5414.
- [12] G.B. Ansell, L. Katz, Acta Cryst. 121 (1966) 482-485.
- [13] J. Cuny, P. Gougeon, P. Gall, Acta Cryst. E 65 (2009) i51.
- [14] Y. Le Page, P. Strobel, Acta Cryst. B 38 (1982) 1265-1267.
- [15] Y. Kanazawa, A. Sasaki, Acta Cryst. C 42 (1986) 9-11.
- [16] R. Knorr, U. Müller, Z. Anorg. Allg. Chem. 621 (1995) 541-545.
- [17] P. Strobel, Y. Le Page, J. Cryst. Growth 61 (1983) 329-338.
- [18] W.H. McCarroll, C. Darling, G. Jakubicki, J. Solid State Chem. 48 (1983) 189 - 195
- [19] F. Varret, H. Czeskleba, F. Hartmann-bourtron, P. Imbert, J. Physique 33 (1972) 549–564. [20] P. Strobel, Y. Le Page, S.P. McAlister, J. Solid State Chem. 42 (1982) 242–250.
- [21] D. Bertrand, H. Kerner-Czeskleba, J. Physique 36 (1975) 379–390.
- [22] S.P. McAlister, P. Strobel, J. Mag. Mag. Mater. 30 (1983) 340-348.
- [23] S.P. McAlister, J. Appl. Phys. 55 (1984) 2343-2345.
- [24] B. Lippold, J. Hermann, W. Reichelt, H. Oppermann, Phys. Stat. Sol. 121 (1990) K91-K95.
- [25] R.D. Shannon, C.T. Prewitt, Acta Cryst. B 25 (1969) 925-946.
- [26] I.D. Brown, The Chemical Bond in Inorganic Chemistry: The Bond Valence Model (International Union of Crystallography Monographs on Crystallography), Oxford University Press, Oxford, 2002.
- [27] B.J. Tan, K.J. Klabunde, P.M.A. Sherwood, J. Amer. Chem. Soc. 113 (1991) 855-861.
- [28] J.C. Carver, G.K. Schweitzer, T.A. Carlson, J. Phys. Chem. 57 (1972) 973-982.